CFD in Ship Design

Juha Hanhinen

COMPANY INFORMATION

OFFICES IN FINLAND: Raisio (Head Office) Helsinki Rauma

OTHER COMPANIES IN THE GROUP:

Delta-Astra, Finland (50%) Brodoplan d.o.o., Croatia (50%) Astramarin, Russia (65% by Delta-Astra) Shandong Deltamarin (50%) Representative office in Shanghai V.Delta, Monaco (50%)

CFD in Ship Design Juha Hanhinen

PERSONNEL 01/2007

Deltamarin	183
Deltamarin Contracting	69
Delta-Sigma	6
Astramarin	69
Brodoplan	45
Shandong Deltamarin	30
Rep. office in Shanghai	2
TOTAL	404

History of CFD in Ship Design

- Commercial calculations started late –80's, model test institutes started offer cfd-service for pre-optimizing hull geometry prior the testing
- First programs were based on linear potential flow theory

DM CFD Background

- DM involved with Finflo-Ship development almost from the beginning (-96)
- DM acquired its first cfd-program (Shallo from HSVA) in 1997

CFD @ DM Today

- > Two cfd-licenses in daily use, 25...30 hull geometry designs every year
- Program v-Shallo (HSVA 2003), based on nonlinear potential flow theory
- DM subcontracts RANSE-calculations

Surface Wave Patterns

Juha Hanhinen

Bulb Geometry Optimization

CFD in Ship Design Juha Hanhinen

Shallow Water Effect

Flow Lines

Near Future

- RANSE codes already in commercial use in model test institutes
- RANSE codes are soon coming to engineering use (latest TEKES funded Finflo-proj. just finished)
- Free surface boundary condition traditionally been problem for viscose-flow solvers

Top Priorities

- Accurate propeller-hull interaction
- Accurate powering performance calculation
- Faster iteration times/more powerful computers
- Faster/more automatic grid generation

Distant Future Needs

 Complete ship behavior simulation; Maneuvering, seakeeping...

End of physical scale model testing

